|   [1] BASSEGODA A, IVANOVA K, RAMON E, et al. Strategies to prevent the occurrence of resistance against antibiotics by using advanced materials[J]. Appl Microbiol Biotechnol, 2018, 102(5):2075-2089. 
[2] XIA X J, CHENG L K, ZHANG S P, et al. The role of natural antimicrobial peptides during infection and chronic inflammation[J]. Antonie van Leeuwenhoek, 2018, 111(1):5-26. 
[3] LIANG X, NONG X H, HUANG Z H, et al. Antifungal and antiviral cyclic peptides from the deep-sea-derived fungus Simplicillium obclavatum EIODSF 020[J]. J Agric Food Chem, 2017, 65(25):5114-5121. 
[4] BOTO A, DE LA LASTRA J M P, GONZÁLEZ C C. The road from host-defense peptides to a new generation of antimicrobial drugs[J]. Molecules, 2018, 23(2):E311. 
[5] KUMAR P, KIZHAKKEDATHU J N, STRAUS S K. Antimicrobial peptides:diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo[J]. Biomolecules, 2018, 8(1):E4. 
[6] AGHAZADEH H, MEMARIANI H, RANJBAR R, et al. The activity and action mechanism of novel short selective LL-37-derived anticancer peptides against clinical isolates of Escherichia coli[J]. Chem Biol Drug Des, 2018, doi:10. 1111/cbdd. 13381. 
[7] BROGDEN K A. Antimicrobial peptides:pore formers or metabolic inhibitors in bacteria?[J]. Nat Rev Microbiol, 2005, 3(3):238-250. 
[8] CHAN D I, PRENNER E J, VOGEL H J. Tryptophan-and arginine-rich antimicrobial peptides:structures and mechanisms of action[J]. Biochim Biophys Acta-Biomembr, 2006, 1758(9):1184-1202. 
[9] DIAS S A, FREIRE J M, PÉREZ-PEINADO C, et al. New potent membrane-targeting antibacterial peptides from viral capsid proteins[J]. Front Microbiol, 2017, 8:775. 
[10] GRAF M, MARDIROSSIAN M, NGUYEN F, et al. Proline-rich antimicrobial peptides targeting protein synthesis[J]. Nat Prod Rep, 2017, 34(7):702-711. 
[11] LI J G, KOH J J, LIU S P, et al. Membrane active antimicrobial peptides:translating mechanistic insights to design[J]. Front Neurosci, 2017, 11:73. 
[12] CAO X Q, WANG Y, WU C Y, et al. Cathelicidin-OA1, a novel antioxidant peptide identified from an amphibian, accelerates skin wound healing[J]. Sci Rep, 2018, 8(1):943. 
[13] WIRADHARMA N, SNG M Y S, KHAN M, et al. Rationally designed α-helical broad-spectrum antimicrobial peptides with idealized facial amphiphilicity[J]. Macromol Rapid Commun, 2013, 34(1):74-80. 
[14] RODRíGUEZ A, VILLEGAS E, SATAKE H, et al. Amino acid substitutions in an alpha-helical antimicrobial arachnid peptide affect its chemical properties and biological activity towards pathogenic bacteria but improves its therapeutic index[J]. Amino Acids, 2011, 40(1):61-68. 
[15] TAN J J, HUANG J F, HUANG Y B, et al. Effects of single amino acid substitution on the biophysical properties and biological activities of an amphipathic α-helical antibacterial peptide against Gram-negative bacteria[J]. Molecules, 2014, 19(8):10803-10817. 
[16] STRANDBERG E, ZERWECK J, HORN D, et al. Influence of hydrophobic residues on the activity of the antimicrobial peptide magainin 2 and its synergy with PGLa[J]. J Pept Sci, 2015, 21(5):436-445. 
[17] RINGSTAD L, NORDAHL E A, SCHMIDTCHEN A, et al. Composition effect on peptide interaction with lipids and bacteria:Variants of C3a peptide CNY21[J]. Biophys J, 2007, 92(1):87-98. 
[18] ZHU W L, LAN H L, PARK Y, et al. Effects of Pro → peptoid residue substitution on cell selectivity and mechanism of antibacterial action of tritrpticin-amide antimicrobial peptide[J]. Biochemistry, 2006, 45(43):13007-13017. 
[19] HU W N, JIAO W J, MA Z, et al. The influence of isoleucine and arginine on biological activity and peptide-membrane interactions of antimicrobial peptides from the bactericidal domain of AvBD4[J]. Protein Pept Lett, 2013, 20(11):1189-1199. 
[20] CHEN Y X, GUARNIERI M T, VASIL A I, et al. Role of peptide hydrophobicity in the mechanism of action of α-helical antimicrobial peptides[J]. Antimicrob Agents Chemother, 2007, 51(4):1398-1406. 
[21] LEE E, SHIN A, JEONG K W, et al. Role of phenylalanine and valine10 residues in the antimicrobial activity and cytotoxicity of piscidin-1[J]. PLoS One, 2014, 9(12):e114453. 
[22] DONG N, ZHU X, CHOU S L, et al. Antimicrobial potency and selectivity of simplified symmetric-end peptides[J]. Biomaterials, 2014, 35(27):8028-8039. 
[23] BALAKRISHNAN V S, VAD B S, OTZEN D E. Novicidin's membrane permeabilizing activity is driven by membrane partitioning but not by helicity:A biophysical study of the impact of lipid charge and cholesterol[J]. Biochim Biophys Acta-Prot Proteom, 2013, 1834(6):996-1002. 
[24] ZHU X, SHAN A S, MA Z, et al. Bactericidal efficiency and modes of action of the novel antimicrobial peptide T9W against Pseudomonas aeruginosa[J]. Antimicrob Agents Chemother, 2015, 59(6):3008-3017. 
[25] MAISETTA G, DI LUCA M, ESIN S, et al. Evaluation of the inhibitory effects of human serum components on bactericidal activity of human beta defensin 3[J]. Peptides, 2008, 29(1):1-6. 
[26] CHEN A M, SHI Q S, OUYANG Y S, et al. Effect of Ce3+ on membrane permeability of Escherichia coli cell[J]. J Rare Earths, 2012, 30(9):947-951. 
[27] LIU Y F, XIA X, XU L, et al. Design of hybrid β-hairpin peptides with enhanced cell specificity and potent anti-inflammatory activity[J]. Biomaterials, 2013, 34(1):237-250. 
[28] GIANGASPERO A, SANDRI L, TOSSI A. Amphipathic α helical antimicrobial peptides:a systematic study of the effects of structural and physical properties on biological activity[J]. FEBS J, 2001, 268(21):5589-5600. 
[29] SONG R, WEI R B, LUO H Y, et al. Isolation and characterization of an antibacterial peptide fraction from the pepsin hydrolysate of half-fin anchovy (Setipinna taty)[J]. Molecules, 2012, 17(3):2980-2991. 
[30] WEI L, YANG J J, HE X Q, et al. Structure and function of a potent lipopolysaccharide-binding antimicrobial and anti-inflammatory peptide[J]. J Med Chem, 2013, 56(9):3546-3556. 
[31] CHEN C X, HU J, ZHANG S Z, et al. Molecular mechanisms of antibacterial and antitumor actions of designed surfactant-like peptides[J]. Biomaterials, 2012, 33(2):592-603. 
[32] ZHANG L J, ROZEK A, HANCOCK R E W. Interaction of cationic antimicrobial peptides with model membranes[J]. J Biol Chem, 2001, 276(38):35714-35722. 
[33] HUANG Y B, WANG X F, WANG H Y, et al. Studies on mechanism of action of anticancer peptides by modulation of hydrophobicity within a defined structural framework[J]. Mol Cancer Ther, 2011, 10(3):416-426. 
[34] WANG J J, CHOU S L, XU L, et al. High specific selectivity and membrane-active mechanism of the synthetic centrosymmetric α-helical peptides with Gly-Gly pairs[J]. Sci Rep, 2015, 5:15963. 
[35] KIM S, HYUN S, LEE Y, et al. Nonhemolytic cell-penetrating peptides:site specific introduction of glutamine and lysine residues into the α-helical peptide causes deletion of its direct membrane disrupting ability but retention of its cell penetrating ability[J]. Biomacromolecules, 2016, 17(9):3007-3015. 
[36] PATHAK N, SALAS-AUVERT R, RUCHE G, et al. Comparison of the effects of hydrophobicity, amphiphilicity, and α-helicity on the activities of antimicrobial peptides[J]. Proteins, 1995, 22(2):182-186. 
[37] KHARA J S, LIM F K, WANG Y, et al. Designing α-helical peptides with enhanced synergism and selectivity against Mycobacterium smegmatis:discerning the role of hydrophobicity and helicity[J]. Acta Biomater, 2015, 28:99-108. 
[38] HUANG J F, HAO D M, CHEN Y, et al. Inhibitory effects and mechanisms of physiological conditions on the activity of enantiomeric forms of an α-helical antibacterial peptide against bacteria[J]. Peptides, 2011, 32(7):1488-1495. 
[39] AROURI A, DATHE M, BLUME A. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes[J]. Biophys Chem, 2013, 180-181:10-21. 
[40] AQUILA M, BENEDUSI M, KOCH K W, et al. Divalent cations modulate membrane binding and pore formation of a potent antibiotic peptide analog of alamethicin[J]. Cell Calcium, 2013, 53(3):180-186. 
[41] KOO Y S, KIM J M, PARK I Y, et al. Structure-activity relations of parasin I, a histone H2A-derived antimicrobial peptide[J]. Peptides, 2008, 29(7):1102-1108. 
[42] SCHIBLI D J, EPAND R F, VOGEL H J, et al. Tryptophan-rich antimicrobial peptides:comparative properties and membrane interactions[J]. Biochem Cell Biol, 2002, 80(5):667-677. 
[43] MARQUETTE A, BECHINGER B. Biophysical investigations elucidating the mechanisms of action of antimicrobial peptides and their synergism[J]. Biomolecules, 2018, 8(2):18.  |